Yin X., Altman T., Rutherford E., West K.A., Wu Y., Choi J., Beck P.L., Kaplan G.G., Dabbagh K., DeSantis T.Z., Iwai, S. A Comparative Evaluation of Tools to Predict Metabolite Profiles From Microbiome Sequencing Data. Front. Microbiol. (2020). https://doi.org/10.3389/fmicb.2020.595910

Baeza-Raja B., Goodyear A., Liu X., Lam K., Yamamoto L., Li Y., Dodson S. G., McCLure M., Takeuchi T., Kisseleva T., Brenner D.A., Dabbagh K. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. Plos one. (2020). https://doi.org/10.1371/journal.pone.0234038

Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genomics. 21, 56 (2020). https://doi.org/10.1186/s12864-019-6427-1

Ryan, F. et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun. (in press)

Sekido, Y. et al. Some Gammaproteobacteria are enriched within CD14+ macrophages from intestinal lamina propria of Crohn’s disease patients versus mucus. Sci. Rep. 10, 2988 (2020). https://doi.org/10.1038/s41598-020-59937-w

Hagan, T. et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 178, 1313-1328.e13 (2019). https://doi.org/10.1016/j.cell.2019.08.010

Martoni, C. J., Evans, M., Chow, C. T., Chan, L. S. & Leyer, G. Impact of a probiotic product on bowel habits and microbial profile in participants with functional constipation: A randomized controlled trial. J. Dig. Dis. 20, 435–446 (2019). https://doi.org/10.1111/1751-2980.12797

Ravilla, R. et al. Cervical Microbiome and Response to a Human Papillomavirus Therapeutic Vaccine for Treating High-Grade Cervical Squamous Intraepithelial Lesion. Integr. Cancer Ther. 18, (2019). https://doi.org/10.1177/1534735419893063

Reveles, K. R., Patel, S., Forney, L. & Ross, C. N. Age-related changes in the marmoset gut microbiome. Am. J. Primatol. 81, e22960 (2019). https://doi.org/10.1002/ajp.22960

Wollam, J. et al. Microbiota-Produced N -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes 68, 1415–1426 (2019). https://doi.org/10.2337/db18-1307

Alderete, T. L. et al. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ. Res. 161, 472–478 (2018). https://doi.org/10.1016/j.envres.2017.11.046

Bučević Popović, V. et al. The urinary microbiome associated with bladder cancer. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-29054-w

Beli, E. et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 67, 1867–1879 (2018). https://doi.org/10.2337/db18-0158

Reveles, K. R., Ryan, C. N., Chan, L., Cosimi, R. A. & Haynes, W. L. Proton pump inhibitor use associated with changes in gut microbiota composition. Gut 67, 1369–1370 (2018). http://dx.doi.org/10.1136/gutjnl-2017-315306

Sarhan, M. S. et al. G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes Environ. 33, 317–325 (2018). https://doi.org/10.1264/jsme2.ME18023

Shah, M. S. et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 67, 882–891 (2018). https://doi.org/10.1136/gutjnl-2016-313189

Smith, D. J. et al. Airborne Bacteria in Earth’s Lower Stratosphere Resemble Taxa Detected in the Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC). Front. Microbiol. 9, 1–20 (2018). https://doi.org/10.3389/fmicb.2018.01752

Alhasson, F. et al. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS One 12, e0172914 (2017). https://doi.org/10.1371/journal.pone.0172914

DeSantis, T. Z., Shah, M. S., Cope, J. L. & Hollister, E. B. Microbial markers in the diagnosis of colorectal cancer: the promise, reality and challenge. Future Microbiol. 12, 1341–1344 (2017). https://doi.org/10.2217/fmb-2017-0185

Mark Ibekwe, A., Murinda, S. E., Murry, M. A., Schwartz, G. & Lundquist, T. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production. Sci. Total Environ. 580, 1185–1196 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.076

Moss, E. L. et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS One 12, e0182585 (2017). https://doi.org/10.1371/journal.pone.0182585

Saresella, M. et al. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Front. Immunol. 8, 1391 (2017). https://doi.org/10.3389/fimmu.2017.01391

Acosta, A. et al. Effects of Rifaximin on Transit, Permeability, Fecal Microbiome, and Organic Acid Excretion in Irritable Bowel Syndrome. Clin. Transl. Gastroenterol. 7, e173 (2016). https://doi.org/10.1038/ctg.2016.32

Avilés-Jiménez, F. et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin. Microbiol. Infect. 22, 178.e11-178.e22 (2016). https://doi.org/10.1016/j.cmi.2015.10.008

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). https://doi.org/10.1038/nmeth.3869

Deshpande, A. et al. Effect of Fidaxomicin versus Vancomycin on Susceptibility to Intestinal Colonization with Vancomycin-Resistant Enterococci and Klebsiella pneumoniae in Mice. Antimicrob. Agents Chemother. 60, 3988–3993 (2016). https://doi.org/10.1128/AAC.02590-15

Dheer, R. et al. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis. Infect. Immun. 84, 798–810 (2016). https://doi.org/10.1128/IAI.01374-15

Fourie, N. H. et al. The microbiome of the oral mucosa in irritable bowel syndrome. Gut Microbes 7, 286–301 (2016). https://doi.org/10.1080/19490976.2016.1162363

Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One 11, 1–18 (2016). https://doi.org/10.1371/journal.pone.0166104

Jacobi, S. K. et al. Dietary Isomers of Sialyllactose Increase Ganglioside Sialic Acid Concentrations in the Corpus Callosum and Cerebellum and Modulate the Colonic Microbiota of Formula-Fed Piglets. J. Nutr. 146, 200–208 (2016). https://doi.org/10.3945/jn.115.220152

Mandalari, G., Chessa, S., Bisignano, C., Chan, L. & Carughi, A. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota. Food Funct. 7, 4048–4060 (2016). https://doi.org/10.1039/c6fo01137c

Mohan, M. et al. Dietary gluten-induced gut dysbiosis is accompanied by selective upregulation of microRNAs with intestinal tight junction and bacteria-binding motifs in rhesus macaque model of celiac disease. Nutrients 8, 684 (2016). https://doi.org/10.3390/nu8110684

Upadhyaya, B. et al. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci. Rep. 6, 28797 (2016). https://doi.org/10.1038/srep28797

Aviles-Jimenez, F., Vazquez-Jimenez, F., Medrano-Guzman, R., Mantilla, A. & Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 4, 4202 (2015). https://doi.org/10.1038/srep04202

Cantarel, B. L. et al. Gut Microbiota in Multiple Sclerosis. J. Investig. Med. 63, 729–734 (2015). http://dx.doi.org/10.1097/JIM.0000000000000192

Ciaccio, C. E. et al. Home dust microbiota is disordered in homes of low-income asthmatic children. J. Asthma 52, 873–880 (2015). https://doi.org/10.3109/02770903.2015.1028076

Liu, J. et al. Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement. Altern. Med. 15, 279 (2015). https://doi.org/10.1186/s12906-015-0802-5

Miezeiewski, M. et al. An in vitro culture model to study the dynamics of colonic microbiota in Syrian golden hamsters and their susceptibility to infection with Clostridium difficile. ISME J. 9, 321–332 (2015). https://doi.org/10.1038/ismej.2014.127

Probst, A. J., Weinmaier, T., DeSantis, T. Z., Santo Domingo, J. W. & Ashbolt, N. New perspectives on microbial community distortion after whole-genome amplification. PLoS One 10, 1–16 (2015). https://doi.org/10.1371/journal.pone.0124158

Waldor, M. K. et al. Where Next for Microbiome Research? PLoS Biol. 13, 1–9 (2015). https://doi.org/10.1371/journal.pbio.1002050

Kellogg, C. A. et al. Comparing Bacterial Community Composition of Healthy and Dark Spot-Affected Siderastrea siderea in Florida and the Caribbean. PLoS One 9, e108767 (2014). https://doi.org/10.1371/journal.pone.0108767

Renwick, J. et al. The Microbial Community of the Cystic Fibrosis Airway Is Disrupted in Early Life. PLoS One 9, e109798 (2014). https://doi.org/10.1371/journal.pone.0109798

Roder, C. et al. Bacterial profiling of White Plague Disease in a comparative coral species framework. ISME J. 8, 31–39 (2014). https://doi.org/10.1038/ismej.2013.127

Rogier, E. W. et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl. Acad. Sci. 111, 3074–3079 (2014). https://doi.org/10.1073/pnas.1315792111

Schmidt, B. L. et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS One 9, e98741 (2014). https://doi.org/10.1371/journal.pone.0098741

Xuan, C. et al. Microbial Dysbiosis Is Associated with Human Breast Cancer. PLoS One 9, e83744 (2014). https://doi.org/10.1371/journal.pone.0083744

Brown, J. et al. Translating the human microbiome. Nat. Biotechnol. 31, 304–308 (2013). https://doi.org/10.1038/nbt.2543

Choi, J. J. et al. Exercise Attenuates PCB-Induced Changes in the Mouse Gut Microbiome. Environ. Health Perspect. 121, 725–730 (2013). https://doi.org/10.1289/ehp.1306534

Kellogg, C. A. et al. Comparing bacterial community composition between healthy and white plague-like disease states in Orbicella annularis using PhyloChipTM G3 microarrays. PLoS One 8, (2013). https://doi.org/10.1371/journal.pone.0079801

Noval Rivas, M. et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131, 201–212 (2013). https://doi.org/10.1016/j.jaci.2012.10.026

Smith, D. J. et al. Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds. Appl. Environ. Microbiol. 79, 1134–1139 (2013). https://doi.org/10.1128/AEM.03029-12

Zhang, M., Powell, C. A., Benyon, L. S., Zhou, H. & Duan, Y. Deciphering the Bacterial Microbiome of Citrus Plants in Response to ‘Candidatus Liberibacter asiaticus’-Infection and Antibiotic Treatments. PLoS One 8, e76331 (2013). https://doi.org/10.1371/journal.pone.0076331

Abreu, N. A. et al. Sinus Microbiome Diversity Depletion and Corynebacterium tuberculostearicum Enrichment Mediates Rhinosinusitis. Sci. Transl. Med. 4, 151ra124-151ra124 (2012). https://doi.org/10.1126/scitranslmed.3003783

Dybwad, M., Granum, P. E., Bruheim, P. & Blatny, J. M. Characterization of Airborne Bacteria at an Underground Subway Station. Appl. Environ. Microbiol. 78, 1917–1929 (2012). https://doi.org/10.1128/AEM.07212-11

He, Z. et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J. 6, 259–272 (2012). https://doi.org/10.1038/ismej.2011.99

Huang, Y. J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372-381.e3 (2011). https://doi.org/10.1016/j.jaci.2010.10.048

Kelly, L. C. et al. Bacterial Diversity of Terrestrial Crystalline Volcanic Rocks, Iceland. Microb. Ecol. 62, 69–79 (2011). https://doi.org/10.1007/s00248-011-9864-1

Mendes, R. et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science (80-. ). 332, 1097–1100 (2011). https://doi.org/10.1126/science.1203980

Nelson, T. A. et al. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity. Neurogastroenterol. Motil. 23, 169-e42 (2011). https://doi.org/10.1111/j.1365-2982.2010.01637.x

Saulnier, D. M. et al. Gastrointestinal Microbiome Signatures of Pediatric Patients With Irritable Bowel Syndrome. Gastroenterology 141, 1782–1791 (2011). https://doi.org/10.1053/j.gastro.2011.06.072

Weinert, N. et al. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol. Ecol. 75, 497–506 (2011). https://doi.org/10.1111/j.1574-6941.2010.01025.x

Cox, M. J. et al. Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome. PLoS One 5, e8745 (2010). https://doi.org/10.1371/journal.pone.0008745

Hazen, T. C. et al. Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science (80-. ). 330, 204–208 (2010). https://doi.org/10.1126/science.1195979

DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178 (2009). https://doi.org/10.1038/ismej.2008.103